Stratified exponential families: Graphical models and model selection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strati ed Exponential Families: Graphical Models and Model Selection

We provide a classi cation of graphical models according to their representation as exponential families. Undirected graphical models with no hidden variables are linear exponential families (LEFs), directed acyclic graphical (DAG) models and chain graphs with no hidden variables, including DAG models with several families of local distributions, are curved exponential families (CEFs) and graph...

متن کامل

Graphical Models and Exponential Families

We provide a classi cation of graphical models according to their representation as subfamilies of exponential families. Undirected graphical models with no hidden variables are linear exponential families (LEFs), directed acyclic graphical models and chain graphs with no hidden variables, including Bayesian networks with several families of local distributions, are curved exponential families ...

متن کامل

Graphical Models, Exponential Families, and Variational Inference

The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimizati...

متن کامل

Mixed Graphical Models via Exponential Families

Markov Random Fields, or undirected graphical models are widely used to model highdimensional multivariate data. Classical instances of these models, such as Gaussian Graphical and Ising Models, as well as recent extensions (Yang et al., 2012) to graphical models specified by univariate exponential families, assume all variables arise from the same distribution. Complex data from high-throughpu...

متن کامل

Inferring Block Structure of Graphical Models in Exponential Families

Learning the structure of a graphical model is a fundamental problem and it is used extensively to infer the relationship between random variables. In many real world applications, we usually have some prior knowledge about the underlying graph structure, such as degree distribution and block structure. In this paper, we propose a novel generative model for describing the block structure in gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2001

ISSN: 0090-5364

DOI: 10.1214/aos/1009210550